Reproducibility analysis of automated deep learning based localisation of mandibular canals on a temporal CBCT dataset

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Preoperative radiological identification of mandibular canals is essential for maxillofacial surgery. This study demonstrates the reproducibility of a deep learning system (DLS) by evaluating its localisation performance on 165 heterogeneous cone beam computed tomography (CBCT) scans from 72 patients in comparison to an experienced radiologist’s annotations. We evaluated the performance of the DLS using the symmetric mean curve distance (SMCD), the average symmetric surface distance (ASSD), and the Dice similarity coefficient (DSC). The reproducibility of the SMCD was assessed using the within-subject coefficient of repeatability (RC). Three other experts rated the diagnostic validity twice using a 0–4 Likert scale. The reproducibility of the Likert scoring was assessed using the repeatability measure (RM). The RC of SMCD was 0.969 mm, the median (interquartile range) SMCD and ASSD were 0.643 (0.186) mm and 0.351 (0.135) mm, respectively, and the mean (standard deviation) DSC was 0.548 (0.138). The DLS performance was most affected by postoperative changes. The RM of the Likert scoring was 0.923 for the radiologist and 0.877 for the DLS. The mean (standard deviation) Likert score was 3.94 (0.27) for the radiologist and 3.84 (0.65) for the DLS. The DLS demonstrated proficient qualitative and quantitative reproducibility, temporal generalisability, and clinical validity.

Cite

CITATION STYLE

APA

Järnstedt, J., Sahlsten, J., Jaskari, J., Kaski, K., Mehtonen, H., Hietanen, A., … Nalampang, S. (2023). Reproducibility analysis of automated deep learning based localisation of mandibular canals on a temporal CBCT dataset. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-40516-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free