Background: Intraoperative proximal femoral fractures (IPFF) are relevant complications during total hip arthroplasty. Fixation using cerclage wires (CW) represents a minimally-invasive technique to address these fractures through the same surgical approach. The goal of treatment is to mobilise the patient as early as possible, which requires high primary stability. This study aimed to compare different cerclage wire configurations fixing IPFF with regard to biomechanical primary stability. Methods: Standardised IPFF (type II, Modified Mallory Classification) were created in human fresh frozen femora and were fixed either by two or three CW (1.6 mm, stainless steel). All cadaveric specimens (n = 42) were randomised to different groups (quasi-static, dynamic) or subgroups (2 CW, 3 CW) stratified by bone mineral density determined by Dual Energy X-ray Absorptiometry. Using a biomechanical testing setup, quasi-static and dynamic cyclic failure tests were carried out. Cyclic loading started from 200 N to 500 N at 1 Hz with increasing peak load by 250 N every 100 cycles until failure occurred or maximum load (5250 N) reached. The change of fracture gap size was optically captured. Results: No significant differences in failure load after quasi-static (p = 0.701) or dynamic cyclic loading (p = 0.132) were found between the experimental groups. In the quasi-static load testing, all constructs resisted 250% of the body weight (BW) of their corresponding body donor. In the dynamic cyclic load testing, all but one construct (treated by 3 CW) resisted 250% BW. Conclusions: Based on this in vitro data, both two and three CW provided sufficient primary stability according to the predefined minimum failure load (250% BW) to resist. The authors recommend the treatment using two CW because it reduces the risk of vascular injury and shortens procedure time.
CITATION STYLE
Wendler, T., Edel, M., Möbius, R., Fakler, J., Osterhoff, G., & Zajonz, D. (2022). Fixation of intraoperative proximal femoral fractures during THA using two versus three cerclage wires - a biomechanical study. BMC Musculoskeletal Disorders, 23(1). https://doi.org/10.1186/s12891-021-04956-5
Mendeley helps you to discover research relevant for your work.