Lipopeptides have a widespread role in different pathways of Bacillus subtilis; they can act as antagonists, spreader and immunostimulators. Plipastatin, an antifungal antibiotic, is one of the most important lipopeptide nonribosomly produced by Bacillus subtilis. Plipastatin has strong fungitoxic activity and involve in inhibition of phospholipase A2 and biofilm formation. For better understanding of the molecule and pathway by which lipopeptide plipastatin is synthesized, we present a computationally predicted structure of plipastatin using homology modeling. Primary and secondary structure analysis suggested that ppsD is a hydrophilic protein containing a significant proportion of alpha helices, and subcellular localization predictions suggested it is a cytoplasmic protein. The tertiary structure of protein (plipastatin synthase subunit D) was predicted by homology modeling. The results suggest a flexible structure which is also an important characteristic of active enzymes enabling them to bind various cofactors and substrates for proper functioning. Validation of 3D structure was done using Ramachandran plot ProsA-web and QMEAN score.This predicted information will help in better understanding of mechanisms underlying plipastatin synthase subunit D synthesis. Plipastatin can be used as an inhibitor of various fungal diseases in plants.
CITATION STYLE
Batool, M., Khalid, M. H., Hassan, M. N., & Hafeez, F. Y. (2011). Homology modeling of an antifungal metabolite plipastatin synthase from the bacillus subtilis 168. Bioinformation, 7(8), 384–387. https://doi.org/10.6026/97320630007384
Mendeley helps you to discover research relevant for your work.