Evaluation of resistance development to the GWT1 inhibitor manogepix (APX001A) in Candida species

40Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Manogepix (MGX) targets the conserved fungal Gwt1 enzyme required for acylation of inositol early in the glycosylphosphatidylinositol biosynthesis pathway. The prodrug fosmanogepix is currently in clinical development for the treatment of invasive fungal infections. We determined that the median frequencies of spontaneous mutations conferring reduced susceptibility to MGX in Candida albicans, C. glabrata, and C. parapsilosis ranged from 3 × 10-8 to <1.85 × 10-8. Serial passage on agar identified mutants of C. albicans and C. parapsilosis with reduced susceptibility to MGX; however, this methodology did not result in C. glabrata mutants with reduced susceptibility. Similarly, serial passage in broth resulted in ≤2-fold changes in population MIC values for C. tropicalis, C. auris, and C. glabrata. A spontaneous V163A mutation in the Gwt1 protein of C. glabrata and a corresponding C. albicans heterozygous V162A mutant were obtained. A C. glabrata V163A Gwt1 mutant generated using CRISPR, along with V162A and V168A mutants expressed in C. albicans and Saccharomyces cerevisiae Gwt1, respectively, all demonstrated reduced susceptibility to MGX versus control strains, suggesting the importance of this valine residue to MGX binding across different species. Cross-resistance to the three major classes of antifungals was evaluated, but no changes in susceptibility to amphotericin B or caspofungin were observed in any mutant. No change was observed in fluconazole susceptibility, with the exception of a single non-Gwt1 mutant, where a 4-fold increase in the fluconazole MIC was observed. MGX demonstrated a relatively low potential for resistance development, consistent with other approved antifungal agents and those in clinical development.

Cite

CITATION STYLE

APA

Kapoor, M., Moloney, M., Soltow, Q. A., Pillar, C. M., & Shaw, K. J. (2020). Evaluation of resistance development to the GWT1 inhibitor manogepix (APX001A) in Candida species. Antimicrobial Agents and Chemotherapy, 64(1). https://doi.org/10.1128/AAC.01387-19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free