Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium (NH4+). We measured NH4+ regeneration and potential uptake rates and total nitrification using stable-isotope techniques. Nitrification studies included abundance of the functional gene for NH4+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential NH4+ uptake rates ranged from 0.02 to 6.80μmolL-1h-1 in the light and from 0.05 to 3.33μmolL-1h-1 in the dark, and NH4+ regeneration rates ranged from 0.03 to 2.37μmolL-1h-1. Nitrification rates exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 200nmolL-1d-1 and was > 1000nmolL-1d-1 at one station near a river discharge. AOA amoA gene copies were more abundant than AOB gene copies (p < 0.005) at all times; however, only abundance of AOB amoA (not AOA) was correlated with nitrification rates for all stations and all seasons (p < 0.005). Nitrification rates in Taihu Lake varied seasonally; at most stations, rates were highest in March, lower in June, and lowest in July, corresponding with cyanobacterial bloom progression, suggesting that nitrifiers were poor competitors for NH4+ during the bloom. Regeneration results suggested that cyanobacteria relied extensively on regenerated NH4+ to sustain the bloom. Internal NH4+ regeneration exceeded external N loading to the lake by a factor of 2 but was ultimately fueled by external N loads. Our results thus support the growing literature calling for watershed N loading reductions in concert with existing management of P loads.
CITATION STYLE
Hampel, J. J., McCarthy, M. J., Gardner, W. S., Zhang, L., Xu, H., Zhu, G., & Newell, S. E. (2018). Nitrification and ammonium dynamics in Taihu Lake, China: Seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences, 15(3), 733–748. https://doi.org/10.5194/bg-15-733-2018
Mendeley helps you to discover research relevant for your work.