Alzheimer’s Disease: Models and Molecular Mechanisms Informing Disease and Treatments

0Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Alzheimer’s Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.

Author supplied keywords

Cite

CITATION STYLE

APA

Nystuen, K. L., McNamee, S. M., Akula, M., Holton, K. M., DeAngelis, M. M., & Haider, N. B. (2024, January 1). Alzheimer’s Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/bioengineering11010045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free