Stark-induced adiabatic Raman passage examined through the preparation of D2 (v = 2, j = 0) and D2 (v = 2, j = 2, m = 0)

15Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We study the conditions that must be met for successful preparation of a large ensemble in a specific target quantum state using Stark-induced adiabatic Raman passage (SARP). In particular, we show that the threshold condition depends on the relative magnitudes of the Raman polarizability (r0v) and the difference of the optical polarizabilities (Δα00→vj) of the initial (v = 0, j = 0) and the target (v, j) rovibrational levels. Here, v and j are the vibrational and rotational quantum numbers, respectively. To illustrate how the operation of SARP is controlled by these two parameters, we experimentally prepared D2 (v = 2, j = 0) and D2 (v = 2, j = 2, m = 0) in a beam of D2 (v = 0, j = 0) molecules using a sequence of partially overlapping pump and Stokes laser pulses. By comparing theory and experiment, we were able to determine the Raman polarizability r02 ≈ 0.3 × 10-41 Cm/(V/m) and the difference polarizabilities Δα00→20 ≈ 1.4 × 10-41 Cm/(V/m) and Δα00→22 ≈ 3.4 × 10-41 Cm/(V/m) for the two Raman transitions. Our experimental data and theoretical calculations show that because the ratio r/Δα is larger for the (0,0) → (2,0) transition than the (0,0) → (2,2) transition, much less optical power is required to transfer a large population to the (v = 2, j = 0) level. Nonetheless, our experiment demonstrates that substantial population transfer to both the D2 (v = 2, j = 0) and D2 (v = 2, j = 2, m = 0) is achieved using appropriate laser fluences. Our derived threshold condition demonstrates that with increasing vibrational quantum number, it becomes more difficult to achieve large amounts of population transfer.

Cite

CITATION STYLE

APA

Perreault, W. E., Mukherjee, N., & Zare, R. N. (2019). Stark-induced adiabatic Raman passage examined through the preparation of D2 (v = 2, j = 0) and D2 (v = 2, j = 2, m = 0). Journal of Chemical Physics, 150(23). https://doi.org/10.1063/1.5109261

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free