Surfactant Adsorption Isotherms: A Review

471Citations
Citations of this article
1.0kReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The need to minimize surfactant adsorption on rock surfaces has been a challenge for surfactant-based, chemical-enhanced oil recovery (cEOR) techniques. Modeling of adsorption experimental data is very useful in estimating the extent of adsorption and, hence, optimizing the process. This paper presents a mini-review of surfactant adsorption isotherms, focusing on theories of adsorption and the most frequently used adsorption isotherm models. Two-step and four-region adsorption theories are well-known, with the former representing adsorption in two steps, while the latter distinguishes four regions in the adsorption isotherm. Langmuir and Freundlich are two-parameter adsorption isotherms that are widely used in cEOR studies. The Langmuir isotherm is applied to monolayer adsorption on homogeneous sites, whereas the Freundlich isotherm suites are applied to multilayer adsorption on heterogeneous sites. Some more complex adsorption isotherms are also discussed in this paper, such as Redlich-Peterson and Sips isotherms, both involve three parameters. This paper will help select and apply a suitable adsorption isotherm to experimental data.

Cite

CITATION STYLE

APA

Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S. (2021, December 7). Surfactant Adsorption Isotherms: A Review. ACS Omega. American Chemical Society. https://doi.org/10.1021/acsomega.1c04661

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free