Construction of a novel prognostic-predicting model correlated to ovarian cancer

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Background: Ovarian cancer (OC) is one of the most lethal gynecological cancers worldwide. The pathogenesis of the disease and outcomes prediction of OC patients remain largely unclear. The present study aimed to explore the key genes and biological pathways in ovarian carcinoma development, as well as construct a prognostic model to predict patients’ overall survival (OS). Results: We identified 164 up-regulated and 80 down-regulated differentially expressed genes (DEGs) associated with OC. Gene Ontology (GO) term enrichment showed DEGs mainly correlated with spindle microtubes. For Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, cell cycle was mostly enriched for the DEGs. The protein–protein interaction (PPI) network yielded 238 nodes and 1284 edges. Top three modules and ten hub genes were further filtered and analyzed. Three candidiate drugs targeting for therapy were also selected. Thirteen OS-related genes were selected and an eight-mRNA model was present to stratify patients into high- and low-risk groups with significantly different survival. Conclusions: The identified DEGs and biological pathways may provide new perspective on the pathogenesis and treatments of OC. The identified eight-mRNA signature has significant clinical implication for outcome prediction and tailored therapy guidance for OC patients.

Cite

CITATION STYLE

APA

Tang, W., Li, J., Chang, X., Jia, L., Tang, Q., Wang, Y., … Feng, Z. (2020). Construction of a novel prognostic-predicting model correlated to ovarian cancer. Bioscience Reports, 40(8). https://doi.org/10.1042/BSR20201261

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free