Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum

11Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The tricarboxylic acid (TCA) cycle is crucial for energy supply in animal, plant, and microbial cells. It is not only the main pathway of carbohydrate catabolism but also the final pathway of lipid and protein catabolism. Some TCA genes have been found to play important roles in the growth and development of tomato and potato, but no comprehensive study of TCA cycle genes in Solanaceae crops has been reported. Results: In this study, we analyzed TCA cycle genes in four important Solanaceae vegetable crops (potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum)) based on comparative genomics. The four Solanaceae crops had a total of 180 TCA cycle genes: 43 in potato, 44 in tomato, 40 in eggplant, and 53 in pepper. Phylogenetic analysis, collinearity analysis, and tissue expression patterns revealed the conservation of and differences in TCA cycle genes between the four Solanaceae crops and found that there were unique subgroup members in Solanaceae crops that were independent of Arabidopsis genes. The expression analysis of potato TCA cycle genes showed that (1) they were widely expressed in various tissues, and some transcripts like Soltu.DM.01G003320.1(SCoAL) and Soltu.DM.04G021520.1 (SDH) mainly accumulate in vegetative organs, and some transcripts such as Soltu.DM.12G005620.3 (SDH) and Soltu.DM.02G007400.4 (MDH) are preferentially expressed in reproductive organs; (2) several transcripts can be significantly induced by hormones, such as Soltu.DM.08G023870.2 (IDH) and Soltu.DM.06G029290.1 (SDH) under ABA treatment, and Soltu.DM.07G021850.2 (CSY) and Soltu.DM.09G026740.1 (MDH) under BAP treatment, and Soltu.DM.02G000940.1 (IDH) and Soltu.DM.01G031350.4 (MDH) under GA treatment; (3) Soltu.DM.11G024650.1 (SDH) can be upregulated by the three disease resistance inducers including Phytophthora infestans, acibenzolar-S-methyl (BTH), and DL-β-amino-n-butyric acid (BABA); and (4) the levels of Soltu.DM.01G045790.1 (MDH), Soltu.DM.01G028520.3 (CSY), and Soltu.DM.12G028700.1 (CSY) can be activated by both NaCl and mannitol. The subcellular localization results of three potato citrate synthases showed that Soltu.DM.01G028520.3 was localized in mitochondria, while Soltu.DM.12G028700.1 and Soltu.DM.07G021850.1 were localized in the cytoplasm. Conclusions: This study provides a scientific foundation for the comprehensive understanding and functional studies of TCA cycle genes in Solanaceae crops and reveals their potential roles in potato growth, development, and stress response.

References Powered by Scopus

NIH Image to ImageJ: 25 years of image analysis

47072Citations
N/AReaders
Get full text

MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods

36420Citations
N/AReaders
Get full text

Clustal W and Clustal X version 2.0

24652Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Effect and mechanism of microplastics exposure against microalgae: Photosynthesis and oxidative stress

25Citations
N/AReaders
Get full text

Expand and Sensitize: Guanidine-Functionalized Exopolysaccharide Nanoparticles Cause Bacterial Cell Expansion and Antibiotic Sensitization

13Citations
N/AReaders
Get full text

Metabolomics reveals the impact of nitrogen combined with the zinc supply on zinc availability in calcareous soil via root exudates of winter wheat (Triticum aestivum)

4Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Liu, Y., Qu, J., Shi, Z., Zhang, P., & Ren, M. (2021). Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-08109-9

Readers' Seniority

Tooltip

Researcher 4

67%

PhD / Post grad / Masters / Doc 2

33%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 3

50%

Biochemistry, Genetics and Molecular Bi... 2

33%

Environmental Science 1

17%

Save time finding and organizing research with Mendeley

Sign up for free