Extraction of Eye and Mouth Features for Drowsiness Face Detection Using Neural Network

  • Fitrianingsih E
  • Setyati E
  • Zaman L
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Facial feature extraction is the process of searching for features of facial components such as eyes, nose, mouth and other parts of human facial features. Facial feature extraction is essential for initializing processing techniques such as face tracking, facial expression recognition or face shape recognition. Among all facial features, eye area detection is important because of the detection and localization of the eye. The location of all other facial features can be identified. This study describes automated algorithms for feature extraction of eyes and mouth. The data takes form of video, then converted into a sequence of images through frame extraction process. From the sequence of images, feature extraction is based on the morphology of the eyes and mouth using Neural Network Backpropagation method. After feature extraction of the eye and mouth is completed, the result of the feature extraction will later be used to detect a person’s drowsiness, being useful for other research.

Cite

CITATION STYLE

APA

Fitrianingsih, E., Setyati, E., & Zaman, L. (2018). Extraction of Eye and Mouth Features for Drowsiness Face Detection Using Neural Network. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 103–112. https://doi.org/10.22219/kinetik.v3i2.589

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free