The conversion of alcohols towards aldehydes in the presence of catalysts by non-oxidative dehydrogenation requires special importance from the perspective of green chemistry. Sodium (Na) super ionic conductor (NASICON)-type hydrogen titanium phosphate sulfate (HTPS; H1-xTi2(PO4)3-x(SO4)x, x = 0.5-1) catalysts were synthesized by the sol-gel method, characterized by N2 gas sorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), ultraviolet-visible (UV-VIS) spectroscopy, and their catalytic properties were studied for the non-oxidative dehydrogenation of methanol and ethanol. The ethanol is more reactive than methanol, with the conversion for ethanol exceeding 95% as compared to methanol, where the conversion has a maximum value at 55%. The selectivity to formaldehyde is almost 100% in methanol conversion, while the selectivity to acetaldehyde decreases from 56% to 43% in ethanol conversion, when the reaction temperature is increased from 250 to 400 °C.
CITATION STYLE
Mitran, G., Mieritz, D. G., & Seo, D. K. (2017). Highly selective solid acid catalyst H1-xTi2(PO4)3-x(SO4)x for non-oxidative dehydrogenation of methanol and ethanol. Catalysts, 7(3). https://doi.org/10.3390/catal7030095
Mendeley helps you to discover research relevant for your work.