Tissue microarray (TMA) is a promising technique in the evaluation of immunohistochemical markers in tumors and may be used as an alternative for whole sections. However, only a few studies have correlated a clinical outcome with both TMA and results obtained from whole sections. This study compared immunostaining for Ki-67 and p16 in TMA (3 cores from each specimen) and whole sections of 171 cases of stage III epithelial ovarian cancer with clinical data. A high expression of Ki-67 was identified in 85.0, 85.5, 85.8, 90.5 and 84% of cores 1, 2 and 3, TMAs and whole tissue sections, respectively. A high p16 expression was found in 36.5, 31.4, 30.3, 46.3 and 31.0% of cores 1, 2 and 3, TMAs and whole tissue sections, respectively. The high expression of Ki-67 and p16 in whole tissue sections significantly correlated with that of Ki-67 and p16 in core 1 (P<0.0001 and P<0.0001, respectively), core 2 (P<0.0001 and P<0.0001, respectively), core 3 (P<0.0001 and P<0.0001, respectively), and TMAs (P<0.0001 and P<0.0001, respectively). In univariate analysis, a high expression of Ki-67 and p16 in two of the cores; TMA and the whole tissue sections were significantly correlated to disease-related survival (Ki-67: P=0.008, 0.012, 0.012 and 0.0001, respectively, and p16: P=0.0007, 0.0005, 0.0008 and 0.005, respectively). However, in the multivariate analysis only Ki-67 on whole tissue sections retained an independent prognostic significance (P=0.025). We concluded that more studies, with a higher number of cores, are necessary to determine the efficacy of TMA in reflecting the prognostic value of different antibodies. Morever, evaluation of this method is crucial for each type of tumor and each separate antigen. It is also essential to confirm the clinical correlations on the whole sections before investigating the same parameters on TMA.
CITATION STYLE
Khouja, M. H., Baekelandt, M., Sarab, A., Nesland, J. M., & Holm, R. (2010). Limitations of tissue microarrays compared with whole tissue sections in survival analysis. Oncology Letters, 1(5), 827–831. https://doi.org/10.3892/ol_00000145
Mendeley helps you to discover research relevant for your work.