In this paper, an adaptive Takagi–Sugeno (T–S) fuzzy sliding mode extended autoregressive exogenous input (ARX)–Laguerre proportional integral (PI) observer is proposed. The proposed T–S fuzzy sliding mode extended-state ARX–Laguerre PI observer adaptively improves the reliability, robustness, estimation accuracy, and convergence of fault detection, estimation, and identification. For fault-tolerant control in the presence of uncertainties and unknown conditions, an adaptive fuzzy sliding mode estimation technique is introduced. The sliding surface slope gain is significant to improve the system’s stability, but the sliding mode technique increases high-frequency oscillation (chattering), which reduces the precision of the fault diagnosis and tolerant control. A fuzzy procedure using a sliding surface and actual output position as inputs can adaptively tune the sliding surface slope gain of the sliding mode fault-tolerant control technique. The proposed robust adaptive T–S fuzzy sliding mode estimation extended-state ARX–Laguerre PI observer was verified with six degrees of freedom (DOF) programmable universal manipulation arm (PUMA) 560 robot manipulator, proving qualified efficiency in detecting, isolating, identifying, and tolerant control for faults inherent in sensors and actuators. Experimental results showed that the proposed technique improves the reliability of the fault detection, estimation, identification, and tolerant control.
CITATION STYLE
Piltan, F., Kim, C. H., & Kim, J. M. (2019). Advanced adaptive fault diagnosis and tolerant control for robot manipulators. Energies, 12(7). https://doi.org/10.3390/en12071281
Mendeley helps you to discover research relevant for your work.