Hypoxia and acidosis are common features of several physiological and pathological situations, including cancer and stroke. The HIF (hypoxia-inducible factor) transcription factor plays a seminal role in orchestrating cellular responses to alterations in oxygen availability. HIF is degraded in normal oxygen tension by the VHL (von Hippel-Lindau) tumor suppressor protein but stabilized by hypoxia to activate an array of genes implicated in oxygen homeostasis including vascular endothelial growth factor. Cells respond to a comparatively mild decline in oxygen tension by converting to an anaerobic state of respiration and secreting lactic acid. We recently reported that a decrease in environmental pH triggers sequestration of VHL into the nucleolus neutralizing its ability to degrade HIF. This implies that cells have evolved a parallel mechanism of HIF activation that responds to changes in oxygen levels by sensing extracellular [H+]. Here we discuss the implications of this new VHL regulatory mechanism on oxygen homeostasis and hypoxic cell memory.
CITATION STYLE
Mekhail, K., Khacho, M., Gunaratnam, L., & Lee, S. (2004). Oxygen sensing by H+: Implications for HIF and hypoxic cell memory. Cell Cycle. Taylor and Francis Inc. https://doi.org/10.4161/cc.3.8.1075
Mendeley helps you to discover research relevant for your work.