Aerodynamic drag is a large resistance force to vehicle motion, particularly at highway speeds. Conventional wheel deflectors were designed to reduce the wheel drag and, consequently, the overall vehicle drag; however, they may actually be detrimental to vehicle aerodynamics in modern designs. In the present study, computational fluid dynamics simulations were conducted on the notchback DrivAer model—a simplified, yet realistic, open-source vehicle model that incorporates features of a modern passenger vehicle. Conventional and air-jet wheel deflectors upstream of the front wheels were introduced to assess the effect of underbody-flow deflection on the vehicle drag. Conventional wheel-deflector designs with varying heights were observed and compared to 45∘ and 90∘ air-jet wheel deflectors. The conventional wheel deflectors reduced wheel drag but resulted in an overall drag increase of up to 10%. For the cases studied, the 90∘ air jet did not reduce the overall drag compared to the baseline case; the 45∘ air jet presented drag benefits of up to 1.5% at 35 m/s and above. Compared to conventional wheel deflectors, air-jet wheel deflectors have the potential to reduce vehicle drag to a greater extent and present the benefit of being turned off at lower speeds when flow deflection is undesirable, thus improving efficiency and reducing emissions.
CITATION STYLE
Nabutola, K. L., & Boetcher, S. K. S. (2021). Assessment of conventional and air-jet wheel deflectors for drag reduction of the DrivAer model. Advances in Aerodynamics, 3(1). https://doi.org/10.1186/s42774-021-00086-7
Mendeley helps you to discover research relevant for your work.