A sequential photocatalytic strategy is developed via the merger of Cu(II)/Cu(I)-catalytic cycles for the oxoallylation of vinyl arenes via α-haloketones. The initial Cu(II)-photocatalyzed oxohalogenation exploits ligand-to-metal charge transfer (LMCT) to generate halide radicals from acyl halides utilizing air as a terminal oxidant and can be employed for the late-stage modification of pharmaceuticals and agrochemicals. α-Bromoketones obtained this way can be subsequently subjected to a one-pot Cu(I)-photocatalyzed allylation. This sequential photocatalysis proceeds in a highly regio- and chemoselective fashion and is inconsequential to the electronic nature of styrenes.
CITATION STYLE
Mandal, T., Katta, N., Paps, H., & Reiser, O. (2023). Merging Cu(I) and Cu(II) Photocatalysis: Development of a Versatile Oxohalogenation Protocol for the Sequential Cu(II)/Cu(I)-Catalyzed Oxoallylation of Vinylarenes. ACS Organic and Inorganic Au, 3(4), 171–176. https://doi.org/10.1021/acsorginorgau.3c00011
Mendeley helps you to discover research relevant for your work.