Designing novel construction for cell surface display of protein E on Escherichia coli using non-classical pathway based on Lpp-OmpA

11Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Today, transference of recombinant protein on the outer surface of bacteria is deemed as a valuable process for various applications in biotechnology including preparation of vaccines. In this study, Lpp-OmpA structure was used to present outer membrane protein E of Haemophilus influenzae on E. coli outer membrane. Also, a structure was designed according to Lpp-OmpA based on non-classical secretion pathway using bioinformatics software such as MEMSAT-SVM, ScrotumP and SignalP where it lacked any signal peptide at its N-terminal. Potential of this structure in the presentation of protein E on the surface of E. coli through non-classical pathway was indicated by western blotting, SDS page and fluorescent microscopy techniques, similarly its effectiveness was compared with Lpp-OmpA system. The results of the current study showed that the new structure had higher efficiency than Lpp-OmpA, and it could transport protein E on outer membrane well. This study is the first report in the presentation of H. influenzae PE onto the surface of E. coli by Lpp-OmpA, and the structure originated from Lpp-OmpA, according to the non-classical secretion pathway. Our results suggest that non-classical secretion pathway may be exploited as a new secretory pathway on the outer surface of the cell for recombinant proteins.

Cite

CITATION STYLE

APA

Jeiranikhameneh, M., Razavi, M. R., Irani, S., Siadat, S. D., & Oloomi, M. (2017). Designing novel construction for cell surface display of protein E on Escherichia coli using non-classical pathway based on Lpp-OmpA. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0350-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free