Today, transference of recombinant protein on the outer surface of bacteria is deemed as a valuable process for various applications in biotechnology including preparation of vaccines. In this study, Lpp-OmpA structure was used to present outer membrane protein E of Haemophilus influenzae on E. coli outer membrane. Also, a structure was designed according to Lpp-OmpA based on non-classical secretion pathway using bioinformatics software such as MEMSAT-SVM, ScrotumP and SignalP where it lacked any signal peptide at its N-terminal. Potential of this structure in the presentation of protein E on the surface of E. coli through non-classical pathway was indicated by western blotting, SDS page and fluorescent microscopy techniques, similarly its effectiveness was compared with Lpp-OmpA system. The results of the current study showed that the new structure had higher efficiency than Lpp-OmpA, and it could transport protein E on outer membrane well. This study is the first report in the presentation of H. influenzae PE onto the surface of E. coli by Lpp-OmpA, and the structure originated from Lpp-OmpA, according to the non-classical secretion pathway. Our results suggest that non-classical secretion pathway may be exploited as a new secretory pathway on the outer surface of the cell for recombinant proteins.
CITATION STYLE
Jeiranikhameneh, M., Razavi, M. R., Irani, S., Siadat, S. D., & Oloomi, M. (2017). Designing novel construction for cell surface display of protein E on Escherichia coli using non-classical pathway based on Lpp-OmpA. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0350-0
Mendeley helps you to discover research relevant for your work.