Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts

21Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose: Milk provides a significant source of calcium, protein, vitamins and other minerals to Western populations throughout life. Due to its widespread use, the metabolic and health impact of milk consumption warrants further investigation and biomarkers would aid epidemiological studies. Methods: Milk intake assessed by a validated food frequency questionnaire was analyzed against fasting blood metabolomic profiles from two metabolomic platforms in females from the TwinsUK cohort (n = 3559). The top metabolites were then replicated in two independent populations (EGCUT, n = 1109 and KORA, n = 1593), and the results from all cohorts were meta-analyzed. Results: Four metabolites were significantly associated with milk intake in the TwinsUK cohort after adjustment for multiple testing (P < 8.08 × 10−5) and covariates (BMI, age, batch effects, family relatedness and dietary covariates) and replicated in the independent cohorts. Among the metabolites identified, the carnitine metabolite trimethyl-N-aminovalerate (β = 0.012, SE = 0.002, P = 2.98 × 10−12) and the nucleotide uridine (β = 0.004, SE = 0.001, P = 9.86 × 10−6) were the strongest novel predictive biomarkers from the non-targeted platform. Notably, the association between trimethyl-N-aminovalerate and milk intake was significant in a group of MZ twins discordant for milk intake (β = 0.050, SE = 0.015, P = 7.53 × 10−4) and validated in the urine of 236 UK twins (β = 0.091, SE = 0.032, P = 0.004). Two metabolites from the targeted platform, hydroxysphingomyelin C14:1 (β = 0.034, SE = 0.005, P = 9.75 × 10−14) and diacylphosphatidylcholine C28:1 (β = 0.034, SE = 0.004, P = 4.53 × 10−16), were also replicated. Conclusions: We identified and replicated in independent populations four novel biomarkers of milk intake: trimethyl-N-aminovalerate, uridine, hydroxysphingomyelin C14:1 and diacylphosphatidylcholine C28:1. Together, these metabolites have potential to objectively examine and refine milk-disease associations.

Cite

CITATION STYLE

APA

Pallister, T., Haller, T., Thorand, B., Altmaier, E., Cassidy, A., Martin, T., … Menni, C. (2017). Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts. European Journal of Nutrition, 56(7), 2379–2391. https://doi.org/10.1007/s00394-016-1278-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free