An Adaptable Flying Fish Robotic Model for Aero- and Hydrodynamic Experimentation

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Flying fishes (family Exocoetidae) are known for achieving multi-modal locomotion through air and water. Previous work on understanding this animal's aerodynamic and hydrodynamic nature has been based on observations, numerical simulations, or experiments on preserved dead fish, and has focused primarily on flying pectoral fins. The first half of this paper details the design and validation of a modular flying fish inspired robotic model organism (RMO). The second half delves into a parametric aerodynamic study of flying fish pelvic fins, which to date have not been studied in-depth. Using wind tunnel experiments at a Reynolds number of 30,000, we investigated the effect of the pelvic fin geometric parameters on aerodynamic efficiency and longitudinal stability. The pelvic fin parameters investigated in this study include the pelvic fin pitch angle and its location along the body. Results show that the aerodynamic efficiency is maximized for pelvic fins located directly behind the pectoral fins and is higher for more positive pitch angles. In contrast, pitching stability is neither achievable for positive pitching angles nor pelvic fins located directly below the pectoral fin. Thus, there is a clear a trade-off between stability and lift generation, and an optimal pelvic fin configuration depends on the flying fish locomotion stage, be it gliding, taxiing, or taking off. The results garnered from the RMO experiments are insightful for understanding the physics principles governing flying fish locomotion and designing flying fish inspired aerial-aquatic vehicles.

Cite

CITATION STYLE

APA

Saro-Cortes, V., Cui, Y., Dufficy, T., Boctor, A., Flammang, B. E., & Wissa, A. (2022). An Adaptable Flying Fish Robotic Model for Aero- and Hydrodynamic Experimentation. In Integrative and Comparative Biology (Vol. 62, pp. 1202–1216). Oxford University Press. https://doi.org/10.1093/icb/icac101

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free