Effects of surfactants on the preparation of MnO2 and its capacitive performance

12Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Amorphous hydrated manganese dioxide (MnO2) was prepared as an electrode material for supercapacitors by liquid co-precipitation in the presence of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and sodium dodecylbenzenesulfonate (SDBS) respectively. The obtained samples were characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical methods. Physical characterizations confirmed that the addition of surfactants played an important role in the preparation of MnO2. The specific surface areas of MnO2 with the addition of PEG, SDBS and PVP were 169.92 m2/g, 137.40 m2/g and 196.64 m2/g, respectively, and the corresponding capacitances were 207.9 F/g, 187.5 F/g and 238.7 F/g. Compared with the sample without surfactants, the specific surface area and capacitance of the sample with the addition of PVP were improved by 92.2% and 53.1%, respectively. Moreover, the electrode showed good cycle stability at the current density of 120 mA/g, and 91.1% of its specific capacitance still remained after 500 cycles. It was concluded that this performance improvement was attributed to the electrostatic stabilization of the multivariate alkyl residue and cyano group (—NCO) as anchoring group, as well as the steric hindrance effect from lateral polarity groups of pentabasic ring in PVP structure.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sun, Y., Dang, H., Huang, N., Wang, D., & Liang, C. (2017). Effects of surfactants on the preparation of MnO2 and its capacitive performance. Journal of Applied Biomaterials and Functional Materials, 15, S7–S12. https://doi.org/10.5301/jabfm.5000356

Readers over time

‘17‘18‘19‘20‘21‘22‘23‘2402468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 11

79%

Professor / Associate Prof. 3

21%

Readers' Discipline

Tooltip

Materials Science 8

50%

Chemical Engineering 4

25%

Chemistry 3

19%

Energy 1

6%

Save time finding and organizing research with Mendeley

Sign up for free
0