The Coma Cluster at LOFAR Frequencies. II. The Halo, Relic, and a New Accretion Relic

  • Bonafede A
  • Brunetti G
  • Rudnick L
  • et al.
43Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present LOw Frequency ARray observations of the Coma Cluster field at 144 MHz. The cluster hosts one of the most famous radio halos, a relic, and a low surface brightness bridge. We detect new features that allow us to make a step forward in the understanding of particle acceleration in clusters. The radio halo extends for more than 2 Mpc, which is the largest extent ever reported. To the northeast of the cluster, beyond the Coma virial radius, we discover an arc-like radio source that could trace particles accelerated by an accretion shock. To the west of the halo, coincident with a shock detected in the X-rays, we confirm the presence of a radio front, with different spectral properties with respect to the rest of the halo. We detect a radial steepening of the radio halo spectral index between 144 and 342 MHz, at ∼30′ from the cluster center, that may indicate a non-constant re-acceleration time throughout the volume. We also detect a mild steepening of the spectral index toward the cluster center. For the first time, a radial change in the slope of the radio–X-ray correlation is found, and we show that such a change could indicate an increasing fraction of cosmic-ray versus thermal energy density in the cluster outskirts. Finally, we investigate the origin of the emission between the relic and the source NGC 4789, and we argue that NGC 4789 could have crossed the shock originating the radio emission visible between its tail and the relic.

Cite

CITATION STYLE

APA

Bonafede, A., Brunetti, G., Rudnick, L., Vazza, F., Bourdin, H., Giovannini, G., … Weeren, R. J. van. (2022). The Coma Cluster at LOFAR Frequencies. II. The Halo, Relic, and a New Accretion Relic. The Astrophysical Journal, 933(2), 218. https://doi.org/10.3847/1538-4357/ac721d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free