In this study, mineralogical analysis and beneficiation experiments were conducted using a placer deposit of North Korea, on which limited information was available, to confirm the feasibility of development. Rare earth elements (REEs) have vital applications in modern technology and are growing in importance in the fourth industrial revolution. However, the price of REEs is unstable due to the imbalance between supply and demand, and tremendous efforts are being made to produce REEs sustainably. One of them is the evaluation of new rare earth mines and the verification of their feasibility. As a result of a mineralogical analysis, in this placer deposit, monazite and some amount of xenotime were the main REE-bearing minerals. Besides these minerals, ilmenite and zircon were the target minerals to be concentrated. Using a magnetic separation method at various magnetic intensities, paramagnetic minerals, ilmenite (0.8 T magnetic product), and monazite/xenotime (1.0–1.4 T magnetic product) were recovered selectively. Using a magnetic separation result, the beneficiation process was conducted with additional gravity separation for zircon to produce a valuable mineral concentrate. The process resulted in three kinds of mineral concentrates (ilmenite, REE-bearing mineral, and zircon). The content of ilmenite increased from 32.5% to 90.9%, and the total rare earth oxide (TREO) (%) of the REE-bearing mineral concentrates reached 45.0%. The zircon concentrate, a by-product of this process, had a Zr grade of 42.8%. Consequently, it was possible to produce concentrates by combining relatively simple separation processes compared to the conventional process for rare earth placer deposit and confirmed the possibility of mine development.
CITATION STYLE
Kim, K., & Jeong, S. (2019). Separation of monazite from placer deposit by magnetic separation. Minerals, 9(3). https://doi.org/10.3390/min9030149
Mendeley helps you to discover research relevant for your work.