Crank Nicholson scheme to examine the fractional-order unsteady nanofluid flow of free convection of viscous fluids

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fractional fluid models are usually difficult to solve analytically due to complicated mathematical calculations. This difficulty in considering fractional model further increases when one considers nth order chemical reaction. Therefore, in this work an incompressible nanofluid flow as well as the benefits of free convection across an isothermal vertical sheet is examined numerically. An nth order chemical reaction is considered in the chemical species model. The specified velocity (wall's) is time-based, and its motion is translational into mathematical form. The fractional differential equations are used to express the governing flow equations (FDEs). The non-dimensional controlling system is given appropriate transformations. A Crank Nicholson method is used to find solutions for temperature, solute concentration, and velocity. Variation in concentration, velocity, and temperature profiles is produced as a result of changes in discussed parameters for both Ag-based and Cu-based nanofluid values. Water is taken as base fluid. The fractional-order time evaluation has opened the new gateways to study the problem into a new direction and it also increased the choices due to the extended version. It records the hidden figures of the problem between the defined domain of the time evaluation. The suggested technique has good accuracy, dependability, effectiveness and it also cover the better physics of the problem specially with concepts of fractional calculus.

Cite

CITATION STYLE

APA

Zubair, T., Usman, M., Nisar, K. S., Khan, I., Ghamkhar, M., & Ahmad, M. (2022). Crank Nicholson scheme to examine the fractional-order unsteady nanofluid flow of free convection of viscous fluids. PLoS ONE, 17(3 March). https://doi.org/10.1371/journal.pone.0261860

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free