The novel butenolide pesticide flupyradifurone does not alter responsiveness to sucrose at either acute or chronic short-term field-realistic doses in the honey bee, Apis mellifera

N/ACitations
Citations of this article
44Readers
Mendeley users who have this article in their library.
Get full text

Abstract

BACKGROUND: Sublethal exposure to neonicotinoids, a popular class of agricultural pesticides, can lead to behavioral effects that impact the health of pollinators. Therefore, new compounds, such as flupyradifurone (FPF), have recently been developed as ‘safer’ alternatives. FPF is an excitotoxic nicotinic acetylcholine receptor agonist, similar to neonicotinoids. Given the novelty of FPF, what data exist are focused mostly on assessing the effect of FPF on pollinator mortality. One important avenue for investigation is the potential effect of FPF on the sensitivity of nectar foragers, such as Apis mellifera, to sucrose concentrations. Neonicotinoids can alter this sucrose responsiveness and disrupt foraging. Compounding this effect, neonicotinoid-containing solutions are preferred by A. mellifera over pure sucrose solutions. We therefore conducted four studies, administering FPF under both acute and chronic conditions, and at field-realistic and higher than field-realistic doses, to assess the influence of FPF exposure on sucrose responsiveness and sucrose solutions with FPF in A. mellifera nectar foragers. RESULTS: We found no evidence that FPF exposure under acute or chronic field-realistic conditions significantly altered sucrose responsiveness, and we did not find that bees exposed to FPF consumed more of the solution. However, at the much higher median lethal dose (48 h), among bees that survived, FPF-exposed foragers responded to significantly lower concentrations of sucrose than controls and responded at significantly higher rates to all concentrations of sucrose than controls. CONCLUSION: We found no evidence that FPF alters the sucrose responsiveness of nectar foragers at field-realistic doses during winter or early spring, but caution and further investigation are warranted, particularly on the effects of FPF in conjunction with other stressors. © 2019 Society of Chemical Industry.

Cite

CITATION STYLE

APA

Bell, H. C., Benavides, J. E., Montgomery, C. N., Navratil, J. R. E., & Nieh, J. C. (2020). The novel butenolide pesticide flupyradifurone does not alter responsiveness to sucrose at either acute or chronic short-term field-realistic doses in the honey bee, Apis mellifera. Pest Management Science, 76(1), 111–117. https://doi.org/10.1002/ps.5554

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free