RNase E of Escherichia coli is an essential endoribonuclease that is involved in many aspects of RNA metabolism. Point mutations in the S1 RNA-binding domain of RNase E (rne-1 and rne-3071) lead to temperature-sensitive growth along with defects in 5S rRNA processing, mRNA decay and tRNA maturation. However, it is not clear whether RNase E acts similarly on all kinds of RNA substrates. Here we report the isolation and characterization of three independent intragenic second-site suppressors of the rne-1 and rne-3071 alleles that demonstrate for the first time the dissociation of the in vivo activity of RNase E on mRNA versus tRNA and rRNA substrates. Specifically, tRNA maturation and 9S rRNA processing were restored to wild-type levels in each of the three suppressor mutants (rne-1/172, rne-1/186 and rne-1/187), while mRNA decay and autoregulation of RNase E protein levels remained as defective as in the rne-1 single mutant. Each single amino acid substitution (Gly → Ala at amino acid 172; Phe → Cys at amino acid 186 and Arg → Leu at amino acid 187) mapped within the 5′ sensor region of the RNase E protein. Molecular models of RNase E suggest how suppression may occur.
CITATION STYLE
Perwez, T., Hami, D., Maples, V. F., Min, Z., Wang, B. C., & Kushner, S. R. (2008). Intragenic suppressors of temperature-sensitive rne mutations lead to the dissociation of RNase E activity on mRNA and tRNA substrates in Escherichia coli. Nucleic Acids Research, 36(16), 5306–5318. https://doi.org/10.1093/nar/gkn476
Mendeley helps you to discover research relevant for your work.