The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 yr after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we have not been able to find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation may preclude the formation of even one accretion disc able to supply the necessary accretion rate to cause the observed jets. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
CITATION STYLE
Tocknell, J., De Marco, O., & Wardle, M. (2014). Constraints on common envelope magnetic fields from observations of jets in planetary nebulae. Monthly Notices of the Royal Astronomical Society, 439(2), 2014–2024. https://doi.org/10.1093/mnras/stu079
Mendeley helps you to discover research relevant for your work.