Impact of Composition and Morphology of Ketoconazole-Loaded Solid Lipid Nanoparticles on Intestinal Permeation and Gastroplus-Based Prediction Studies

9Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ketoconazole (KTZ) is a potential oral antifungal agent to control systemic and local infections. This study addresses the impact of composition (tween 80 and compritol as CATO) and morphology on permeation (stomach, jejunum, and ileum) profiles of KTZ-loaded solid lipid nanoparticles (SLNs) in rats followed by in vivo pharmacokinetic prediction and simulation using GastroPlus. The selected formulations were characterized for size, size distribution, zeta potential, entrapment efficiency, total drug content, morphology, in vitro drug release, ex vivo permeation and drug deposition, penetration potential, and GastroPlus-based in vivo prediction in rats. The results showed that there was considerable impact of pH, composition (CATO and tween 80), size, total drug content, and entrapment efficiency on in vitro drug release and permeation across the stomach, jejunum, and ileum. Ex vivo findings suggested pH, composition, size, and permeability coefficient-dependent permeation of SLNs across the stomach, jejunum, and ileum. Confocal laser scanning microscopy (CLSM) confirmed a relatively high degree of penetration of the optimized formulation "K-SLN4" (66.1% across the stomach, 51.5% across the jejunum, and 47.9% across the ileum) as compared to KSUS (corresponding values of 21.7%, 18.2%, and 17.4%). Finally, GastroPlus predicted in vivo dissolution/absorption as 0.012 μg/mL of K-SLN4 as compared to KSUS (the drug suspension with 0.0058 μg/mL) and a total regional absorption of 80.0% by K-SLN4 as compared to 60.1% of KSUS. There was only an impact of dose on Cmax(maximum plasma concentration) and area under the curve (AUC) in rats. Thus, the present strategy could be a promising alternative to parenteral and topical delivery systems for long-term therapy against systemic and local mycoses with high patient compliance.

Cite

CITATION STYLE

APA

Aljurbui, S. J., Hussain, A., Yusuf, M., Ramzan, M., Afzal, O., Almohaywi, B., … Altamimi, A. S. A. (2022). Impact of Composition and Morphology of Ketoconazole-Loaded Solid Lipid Nanoparticles on Intestinal Permeation and Gastroplus-Based Prediction Studies. ACS Omega, 7(26), 22406–22420. https://doi.org/10.1021/acsomega.2c01272

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free