Background Although walking speed is associated with important clinical outcomes and designated as the sixth vital sign of the elderly, few walking-speed estimation algorithms using an inertial measurement unit (IMU) have been derived and tested in the older adults, especially in the elderly with slow speed. We aimed to develop a walking-speed estimation algorithm for older adults based on an IMU. Methods We used data from 659 of 785 elderly enrolled from the cohort study. We measured gait using an IMU attached on the lower back while participants walked around a 28 m long round walkway thrice at comfortable paces. Best-fit linear regression models were developed using selected demographic, anthropometric, and IMU features to estimate the walking speed. The accuracy of the algorithm was verified using mean absolute error (MAE) and root mean square error (RMSE) in an independent validation set. Additionally, we verified concurrent validity with GAITRite using intraclass correlation coefficients (ICCs). Results The proposed algorithm incorporates the age, sex, foot length, vertical displacement, cadence, and step-time variability obtained from an IMU sensor. It exhibited high estimation accuracy for the walking speed of the elderly and remarkable concurrent validity compared to the GAITRite (MAE = 4.70%, RMSE = 6.81 cm/s, concurrent validity (ICC (3,1)) = 0.937). Moreover, it achieved high estimation accuracy even for slow walking by applying a slowspeed-specific regression model sequentially after estimation by a general regression model. The accuracy was higher than those obtained with models based on the human gait model with or without calibration to fit the population. Conclusions The developed inertial-sensor-based walking-speed estimation algorithm can accurately estimate the walking speed of older adults.
CITATION STYLE
Byun, S., Lee, H. J., Han, J. W., Kim, J. S., Choi, E., & Kim, K. W. (2019). Walking-speed estimation using a single inertial measurement unit for the older adults. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0227075
Mendeley helps you to discover research relevant for your work.