Topography is a significant factor influencing the spatial distribution of precipitation. This study developed a new methodology to evaluate and calibrate the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) products by merging geographic and topographic information. In the proposed method, firstly, the consistency rule was introduced to evaluate the fitness of satellite rainfall with measurements on the grids with and without ground gauges. Secondly, in order to improve the consistency rate of satellite rainfall, genetic programming was introduced to mine the relationship between the gauge rainfall and location, elevation and TMPA rainfall. The proof experiment and analysis for the mean annual satellite precipitation from 2001-2012, 3B43 (V7) of TMPA rainfall product, was carried out in eight mountainous areas of China. The result shows that the proposed method is significant and efficient both for the assessment and improvement of satellite precipitation. It is found that the satellite rainfall consistency rates in the gauged and ungauged grids are different in the study area. In addition, the mined correlation of location-elevation-TMPA rainfall can noticeably improve the satellite precipitation, both in the context of the new criterion of the consistency rate and the existing criteria such as Bias and RMSD. The proposed method is also efficient for correcting the monthly and mean monthly rainfall of 3B43 and 3B42RT.
CITATION STYLE
Xia, T., Wang, Z. J., & Zheng, H. (2015). Topography and data mining based methods for improving satellite precipitation in mountainous areas of China. Atmosphere, 6(8), 983–1005. https://doi.org/10.3390/atmos6080983
Mendeley helps you to discover research relevant for your work.