Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells

173Citations
Citations of this article
92Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Neoangiogenesis is required for tumor development and progression. Many solid tumors induce vascular proliferation by production of angiogenic factors, prominently vascular endothelial growth factor (VEGF). Because nutrition is a causative factor for tumor prevention and promotion, we determined whether secondary plant constituents, i.e., flavonoids, tocopherols, curcumin, and other substances regulate VEGF in human tumor cells in vitro. VEGF release (concurrent with synthesis) from MDA human breast cancer cells and, for comparison, U-343 and U-118 glioma cells was measured by ELISA. Of 21 compounds tested, 9 showed significant inhibitory activity at 0.1 μmol/L in MDA human breast cancer cells. The rank order of inhibitory potency was naringin > rutin > α-tocopheryl succinate (α-TOS) > lovastatin > apigenin > genistein > α-tocopherol ≥ kaempferol > γ-tocopherol; chrysin and curcumin were inactive except at a concentration of 100 μmol/L. Glioma cells were similarly sensitive, with U343 more than U118, especially for α-TOS and tocopherols. Among the tocopherol derivatives, α-TOS (0.1 μmol/L) was the most effective in reducing VEGF release. Overall, the glycosylated flavonoids (i.e., naringin, a constituent of citrus fruits, and rutin, a constituent of cranberries) induced the greatest response to treatment at the lowest concentration in MDA human breast cancer cells. Inhibition of VEGF release by flavonoids, tocopherols, and lovastatin in these models of neoplastic cells suggests a novel mechanism for mammary cancer prevention. © 2006 American Society for Nutrition.

Cite

CITATION STYLE

APA

Schindler, R., & Mentlein, R. (2006). Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. Journal of Nutrition, 136(6), 1477–1482. https://doi.org/10.1093/jn/136.6.1477

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free