Tobacco etch virus (TEV) protease is a 27-kDa catalytic domain of the polyprotein nuclear inclusion a (NIa) in TEV, which recognizes the specific amino acid sequence ENLYFQG/S and cleaves between Q and G/S. Despite its substrate specificity, its use is limited by its autoinactivation through self-cleavage and poor solubility during purification. It was previously reported that T17S/N68D/I77V mutations improve the solubility and yield of TEV protease and S219 mutations provide protection against self-cleavage. In this study, we isolated TEV proteases with S219N and S219V mutations in the background of T17S, N68D, and I77V without the inclusion body, and measured their enzyme kinetics. The kcat of two isolated S219N and S219V mutants in the background of T17S, N68D, and I77V mutations was highly increased compared to that of the control, and S219N was twofold faster than S219V without Km change. This result indicates that combination of these mutations can further enhance TEV activity.
CITATION STYLE
Nam, H., Hwang, B. J., Choi, D. Y., Shin, S., & Choi, M. (2020). Tobacco etch virus (TEV) protease with multiple mutations to improve solubility and reduce self-cleavage exhibits enhanced enzymatic activity. FEBS Open Bio, 10(4), 619–626. https://doi.org/10.1002/2211-5463.12828
Mendeley helps you to discover research relevant for your work.