This paper analyzes a sample of 489 Spitzer/Infrared Array Camera (IRAC) sources in the Extended Groth Strip (EGS), whose spectral energy distributions fit a red power law (PL) from 3.6 to 8.0 μm. The median redshift for sources with known redshifts is 〈z〉 = 1.6. Though all or nearly all of the sample galaxies are likely to be active galactic nuclei (AGNs), only 33% were detected in the EGS X-ray survey (AEGIS-X) using 200 ks Chandra observations. The detected sources are X-ray luminous with L X> 1043 erg s-1 and moderately to heavily obscured with N H>1022 cm-2. Stacking the X-ray-undetected sample members yields a statistically significant X-ray signal, suggesting that they are on average more distant or more obscured than sources with X-ray detections. The ratio of X-ray to mid-infrared fluxes suggests that a substantial fraction of the sources undetected in X-rays are obscured at the Compton-thick level, in contrast to the X-ray-detected sources, all of which appear to be Compton thin. For the X-ray-detected PL sources with redshifts, an X-ray luminosity L X∼1044 erg s-1 marks a transition between low-luminosity, blue sources dominated by the host galaxy to high-luminosity, red PL sources dominated by nuclear activity. X-ray-to-optical ratios, infrared variability, and 24 μm properties of the sample are consistent with the identification of infrared PL sources as active nuclei, but a rough estimate is that only 22% of AGNs are selected by the PL criteria. Comparison of the PL selection technique and various IRAC color criteria for identifying AGNs confirms that high-redshift samples selected via simple IRAC colors may be heavily contaminated by starlight-dominated objects. © 2010. The American Astronomical Society. All rights reserved.
CITATION STYLE
Park, S. Q., Barmby, P., Willner, S. P., Ashby, M. L. N., Fazio, G. G., Georgakakis, A., … Rosario, D. J. (2010). Aegis: A multiwavelength study of Spitzer power-law galaxies. Astrophysical Journal, 717(2), 1181–1201. https://doi.org/10.1088/0004-637X/717/2/1181
Mendeley helps you to discover research relevant for your work.