Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning

67Citations
Citations of this article
152Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, deep learning is coupled with explainable artificial intelligence techniques for the discovery of representative genomic sequences in SARS-CoV-2. A convolutional neural network classifier is first trained on 553 sequences from the National Genomics Data Center repository, separating the genome of different virus strains from the Coronavirus family with 98.73% accuracy. The network’s behavior is then analyzed, to discover sequences used by the model to identify SARS-CoV-2, ultimately uncovering sequences exclusive to it. The discovered sequences are validated on samples from the National Center for Biotechnology Information and Global Initiative on Sharing All Influenza Data repositories, and are proven to be able to separate SARS-CoV-2 from different virus strains with near-perfect accuracy. Next, one of the sequences is selected to generate a primer set, and tested against other state-of-the-art primer sets, obtaining competitive results. Finally, the primer is synthesized and tested on patient samples (n = 6 previously tested positive), delivering a sensitivity similar to routine diagnostic methods, and 100% specificity. The proposed methodology has a substantial added value over existing methods, as it is able to both automatically identify promising primer sets for a virus from a limited amount of data, and deliver effective results in a minimal amount of time. Considering the possibility of future pandemics, these characteristics are invaluable to promptly create specific detection methods for diagnostics.

Cite

CITATION STYLE

APA

Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L., Mulders, D. G. J. C., Molenkamp, R., Perez-Romero, C. A., … Kraneveld, A. D. (2021). Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-80363-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free