Breast Cancer Classification Using Deep Convolutional Neural Networks

  • Chukwu J
  • Sani F
  • Nuhu A
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Breast cancer remains the primary causes of death for women and much effort has been depleted in the form of screening series for prevention. Given the exponential growth in the number of mammograms collected, computer-assisted diagnosis has become a necessity. Histopathological imaging is one of the methods for cancer diagnosis where Pathologists examine tissue cells under different microscopic standards but disagree on the final decision. In this context, the use of automatic image processing techniques resulting from deep learning denotes a promising avenue for assisting in the diagnosis of breast cancer. In this paper, an android software for breast cancer classification using deep learning approach based on a Convolutional Neural Network (CNN) was developed. The software aims to classify the breast tumors to benign or malignant. Experimental results on histopathological images using the BreakHis dataset shows that the DenseNet CNN model achieved high processing performances with 96% of accuracy in the breast cancer classification task when compared with state-of-the-art modelsKeywords— Breast cancer classification, Convolutional Neural Network (CNN), deep learning, DenseNet, histopathological images

Cite

CITATION STYLE

APA

Chukwu, J. K., Sani, F. B., & Nuhu, A. S. (2021). Breast Cancer Classification Using Deep Convolutional Neural Networks. FUOYE Journal of Engineering and Technology, 6(2). https://doi.org/10.46792/fuoyejet.v6i2.617

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free