Photoluminescence and Energy Transfer in Double-and Triple-Lanthanide-Doped YVO4 Nanoparticles

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Optical materials doped with several lanthanides are unique in their properties and are widely used in various fields of science and technology. The study of these systems provides solutions for noncontact thermometry, bioimaging, sensing technology, and others. In this paper, we report on the demonstration of YVO4 nanoparticles doped with one, two, and three different rare earth ions (Tm3+, Er3+, and Nd3+). We discuss the morphology, structural properties, and luminescence behavior of particles. Luminescence decay kinetics reveal the energy transfer efficiency (up to 78%) for different ions under the selective excitation of individual ions. Thus, we found that the energy transition from Tm3+ is more favorable than from Er3+ while we did not observe any significant energy rearrangement in the samples under the excitation of Nd3+. The observed strong variation of REI lifetimes makes the suggested nanoparticles promising for luminescent labeling, anticounterfeiting, development of data storage systems, etc.

Cite

CITATION STYLE

APA

Medvedev, V. A., Kolesnikov, I. E., Olshin, P. K., Mikhailov, M. D., Manshina, A. A., & Mamonova, D. V. (2022). Photoluminescence and Energy Transfer in Double-and Triple-Lanthanide-Doped YVO4 Nanoparticles. Materials, 15(7). https://doi.org/10.3390/ma15072637

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free