The PASCAL VOC Challenge performance has been significantly boosted by the prevalently CNN-based pipelines like Faster R-CNN. However, directly applying the Faster R-CNN to the small remote sensing objects usually renders poor performance. To address this issue, this paper investigates on how to modify Faster R-CNN for the task of small object detection in optical remote sensing images. First of all, we not only modify the RPN stage of Faster R-CNN by setting appropriate anchors but also leverage a single high-level feature map of a fine resolution by designing a similar architecture adopting top-down and skip connections. In addition, we incorporate context information to further boost small remote sensing object detection performance while we apply a simple sampling strategy to solve the issue about the imbalanced numbers of images between different classes. At last, we introduce a simple yet effective data augmentation method named 'random rotation' during training. Experimental results show that our modified Faster R-CNN algorithm improves the mean average precision by a large margin on detecting small remote sensing objects.
CITATION STYLE
Ren, Y., Zhu, C., & Xiao, S. (2018, May 18). Small object detection in optical remote sensing images via modified Faster R-CNN. Applied Sciences (Switzerland). MDPI AG. https://doi.org/10.3390/app8050813
Mendeley helps you to discover research relevant for your work.