The effects of climate warming on the thermal habitat of 57 species of fish of the U.S. were estimated using results for a doubling of atmospheric carbon dioxide that were predicted by the Canadian Climate Center general circulation model. Baseline water temperature conditions were calculated from data collected at 1,700 U.S. Geological Survey stream monitoring stations across the U.S. Water temperatures after predicted climate change were obtained by multiplying air temperature changes by 0.9, a factor based on several field studies, and adding them to baseline water temperatures at stations in corresponding grid cells. Results indicated that habitat for cold and cool water fish would be reduced by ~50%, and that this effect would be distributed throughout the existing range of these species. Habitat losses were greater among species with smaller initial distributions and in geographic regions with the greatest warming (e.g. the central Midwest). Results for warm water fish habitat were less certain because of the poor state of knowledge regarding their high and low temperature tolerances; however, the habitat of many species of this thermal guild likely will also be substantially reduced by climate warming, whereas the habitat of other species will be increased.
CITATION STYLE
Eaton, J. G., & Scheller, R. M. (1996). Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography, 41(5), 1109–1115. https://doi.org/10.4319/lo.1996.41.5.1109
Mendeley helps you to discover research relevant for your work.