Shape, Spin, and Baryon Fraction of Clusters in the MareNostrum Universe

  • Gottlober S
  • Yepes G
93Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

The MareNostrum Universe is one of the largest cosmological SPH simulation done so far. It consists of $1024^3$ dark and $1024^3$ gas particles in a box of 500 $h^{-1}$ Mpc on a side. Here we study the shapes and spins of the dark matter and gas components of the 10,000 most massive objects extracted from the simulation as well as the gas fraction in those objects. We find that the shapes of objects tend to be prolate both in the dark matter and gas. There is a clear dependence of shape on halo mass, the more massive ones being less spherical than the less massive objects. The gas distribution is nevertheless much more spherical than the dark matter, although the triaxiality parameters of gas and dark matter differ only by a few percent and it increases with cluster mass. The spin parameters of gas and dark matter can be well fitted by a lognormal distribution function. On average, the spin of gas is 1.4 larger than the spin of dark matter. We find a similar behavior for the spins at higher redshifts, with a slightly decrease of the spin ratios to 1.16 at $z=1.$ The cosmic normalized baryon fraction in the entire cluster sample ranges from $Y_b = 0.94$, at $z=1$ to $Y_b = 0.92$ at $z=0$. At both redshifts we find a slightly, but statistically significant decrease of $Y_b$ with cluster mass.

Cite

CITATION STYLE

APA

Gottlober, S., & Yepes, G. (2007). Shape, Spin, and Baryon Fraction of Clusters in the MareNostrum Universe. The Astrophysical Journal, 664(1), 117–122. https://doi.org/10.1086/517907

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free