Background/aim: Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells originated from human gingiva (HGMSC). METHODS: To promote the osteogenic differentiation of HGMSCs we employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting and immunofluorescence staining of specific markers. Results: We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with dexamethasone, β-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with increased expression of autophagy markers. Resveratrol (1 μM) alone elicited a less marked osteogenic differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic differentiation of HGMSCs. Conclusions: Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects. Graphical abstract: [Figure not available: see fulltext.]
CITATION STYLE
Vidoni, C., Ferraresi, A., Secomandi, E., Vallino, L., Gardin, C., Zavan, B., … Isidoro, C. (2019). Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Communication and Signaling, 17(1). https://doi.org/10.1186/s12964-019-0414-7
Mendeley helps you to discover research relevant for your work.