Under anaerobic growth conditions, Escherichia coli operates a two-component signal transduction system, termed Arc, that consists of ArcB protein, a transmembrane sensor kinase and ArcA protein, the cognate response regulator. In response to low oxygen levels, autophosphorylated ArcB phosphorylates ArcA, and the resulting phosphorylated ArcA (ArcA-P) functions as a transcriptional regulator of the genes necessary to maintain anaerobic growth. Under anaerobic conditions, cells maintain a slow growth rate, suggesting that the initiation of chromosomal replication is regulated to reduce the initiation frequency. DNase I footprinting experiments revealed that ArcA-P binds to the left region of the chromosomal origin, oriC. ArcA-P did not affect the in vitro replication of plasmid DNA containing the ColE1 origin nor the in vitro replication of viral DNAs; however, ArcA-P specifically inhibited in vitro E. coli chromosomal replication. This inhibition was caused by the prevention of open complex formation, a necessary step in the initiation of chromosomal replication. Our in vitro results suggest that the Arc two-component system participates in regulating chromosomal initiation under anaerobic growth conditions.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Lee, Y. S., Han, J. S., Jeon, Y., & Hwang, D. S. (2001). The Arc Two-component Signal Transduction System Inhibits in Vitro Escherichia coli Chromosomal Initiation. Journal of Biological Chemistry, 276(13), 9917–9923. https://doi.org/10.1074/jbc.M008629200