Order of magnitude comparisons of distance

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Order of magnitude reasoning - reasoning by rough comparisons of the sizes of quantities - is often called 'back of the envelope calculation', with the implication that the calculations are quick though approximate. This paper exhibits an interesting class of constraint sets in which order of magnitude reasoning is demonstrably fast. Specifically, we present a polynomial-time algorithm that can solve a set of constraints of the form 'Points a and b are much closer together than points c and d'. We prove that this algorithm can be applied if 'much closer together' is interpreted either as referring to an infinite difference in scale or as referring to a finite difference in scale, as long as the difference in scale is greater than the number of variables in the constraint sets. We also prove that the first-order theory over such constraints is decidable.

Cite

CITATION STYLE

APA

Davis, E. (1999). Order of magnitude comparisons of distance. Journal of Artificial Intelligence Research, 10, 1–38. https://doi.org/10.1613/jair.520

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free