Numerical simulations of the internal ballistics of paraffin–oxygen hybrid rockets at different scales

10Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Hybrid rockets are considered a promising future propulsion alternative for specific applications to solid or liquid rockets. In order to raise their technology readiness level, it is important to perform predictive numerical simulations of their internal ballistics. The objective of this work is to describe and validate a numerical approach based on Reynolds-averaged Navier–Stokes simulations with sub-models for fluid–surface interaction, radiation, chemistry, and turbulence. Particular attention is given to scale effects by considering two different paraffin–oxygen hybrid rocket engines and a simplified grain evolution approach from the initial to the final port diameter. Moreover, a mild sensitivity of the computed regression rate to paraffin’s melting temperature, surface radiation emissivity, and Schmidt numbers is observed. Results highlight the increasing importance of radiation effects at larger scales and pressures. A numerical rebuilding of regression rate and pressure is obtained with simulations at the time-space-averaged port diameter, producing a reasonable agreement with the available experimental data, but a noticeable improvement is obtained by considering the grain evolution in time.

Cite

CITATION STYLE

APA

Migliorino, M. T., Bianchi, D., & Nasuti, F. (2021). Numerical simulations of the internal ballistics of paraffin–oxygen hybrid rockets at different scales. Aerospace, 8(8). https://doi.org/10.3390/aerospace8080213

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free