The selective laser melting (SLM) process was used to fabricate an Alloy718 specimen. The microstructure and creep properties were characterized in both the as-built and post-processed SLM materials. Post-processing involved several heat treatments and a combination of hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure. The experimental results showed that the originally recommended heat treatment process, STA-980 °C, for cast and wrought materials was not effective for SLM-processed specimens. Obvious grain growth structures were obtained in the STA-1180 °C/1 h and STA-1180 °C/4 h specimens. However, the grain size was uneven since heavy distortion or high-density dislocation formed during the SLMprocess, which would be harmful for the mechanical properties of SLM-fabricated materials. The HIP+ direct aging process was the most effective method among the post-processes to improve the creep behavior at 650 °C. The creep rupture life of the HIP+ direct aging condition approached 800 h since the HIP process had the benefit of being free of pores, thus preventing microcrack nucleation and the formation of a serrated grain boundary.
CITATION STYLE
Kuo, Y. L., Nagahari, T., & Kakehi, K. (2018). The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting. Materials, 11(6). https://doi.org/10.3390/ma11060996
Mendeley helps you to discover research relevant for your work.