Polar molecules in superpositions of rotational states exhibit long-range dipolar interactions, but maintaining their coherence in a trapped sample is a challenge. We present calculations that show many laser-coolable molecules have convenient rotational transitions that are exceptionally insensitive to magnetic fields. We verify this experimentally for CaF where we find a transition with sensitivity below 5 Hz G-1 and use it to demonstrate a rotational coherence time of 6.4(8) ms in a magnetic trap. Simulations suggest it is feasible to extend this to more than 1 s using a smaller cloud in a biased magnetic trap.
CITATION STYLE
Caldwell, L., Williams, H. J., Fitch, N. J., Aldegunde, J., Hutson, J. M., Sauer, B. E., & Tarbutt, M. R. (2020). Long Rotational Coherence Times of Molecules in a Magnetic Trap. Physical Review Letters, 124(6). https://doi.org/10.1103/PhysRevLett.124.063001
Mendeley helps you to discover research relevant for your work.