Monitoring therapeutic treatments against Burkholderia infections using imaging techniques

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidencesupporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Mott, T. M., Johnston, R. K., Vijayakumar, S., Estes, D. M., Motamedi, M., Sbrana, E., … Torres, A. G. (2013). Monitoring therapeutic treatments against Burkholderia infections using imaging techniques. Pathogens, 2(2), 383–401. https://doi.org/10.3390/pathogens2020383

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free