Distinct gamma-band evoked responses to speech and non-speech sounds in humans.

80Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

Abstract

To understand spoken language, the human brain must have fast mechanisms for the representation and identification of speech sounds. Stimulus-induced synchronization of neural activity at gamma frequencies (20-80 Hz), occurring in humans at 200-300 msec from stimulus onset, has been suggested to be a possible mechanism for neural object representation. Auditory and visual stimuli also evoke an earlier (peak <100 msec) gamma oscillation, but its dependence on high-level stimulus parameters and, thereby, its involvement in object representation has remained unclear. Using whole-scalp magnetoencephalography, we show here that responses evoked by speech and non-speech sounds differed in the gamma-frequency but not in the low-frequency (0.1-20 Hz) band as early as 40-60 msec from stimulus onset. The gamma-band responses to the speech sound peaked earlier in the left than in the right hemisphere, whereas those to the non-speech sound peaked earlier in the right hemisphere. For the speech sound, there was no difference in the response amplitude between the hemispheres at low (20-45 Hz) gamma frequencies, whereas for the non-speech sound, the amplitude was larger in the right hemisphere. These results suggest that evoked gamma-band activity may indeed be sensitive to high-level stimulus properties and may hence reflect the neural representation of speech sounds. Consequently, speech-specific neuronal processing may commence no later than 40-60 msec from stimulus onset, possibly in the form of activation of language-specific memory traces.

Cite

CITATION STYLE

APA

Palva, S., Palva, J. M., Shtyrov, Y., Kujala, T., Ilmoniemi, R. J., Kaila, K., & Näätänen, R. (2002). Distinct gamma-band evoked responses to speech and non-speech sounds in humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 22(4). https://doi.org/10.1523/jneurosci.22-04-j0003.2002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free