How long does speciation take? The answer to this important question in evolutionary biology lies in the genetic difference not only among species, but also among lineages within each species. With the advance of genome sequencing in non-model organisms and the statistical tools to improve accuracy in inferring evolutionary histories among recently diverged lineages, we now have the lineage-level trees to answer these questions. However, we do not yet have an analytical tool for inferring speciation processes from these trees. What is needed is a model of speciation processes that generates both the trees and species identities of extant lineages. The model should allow calculation of the probability that certain lineages belong to certain species and have an evolutionary history consistent with the tree. Here, we propose such a model and test the model performance on both simulated data and real data. We show that maximum-likelihood estimates of the model are highly accurate and give estimates from real data that generate patterns consistent with observations. We discuss how to extend the model to account for different rates and types of speciation processes across lineages in a species group. By linking evolutionary processes on lineage level to species level, the model provides a new phylogenetic approach to study not just when speciation happened, but how speciation happened.
CITATION STYLE
Hua, X., Herdha, T., & Burden, C. J. (2022). Protracted Speciation under the State-Dependent Speciation and Extinction Approach. Systematic Biology, 71(6), 1362–1377. https://doi.org/10.1093/sysbio/syac041
Mendeley helps you to discover research relevant for your work.