The Galactic disc is opaque to radio waves from extragalactic sources with frequencies nu less than ~3 MHz. However, radio waves with kHz, Hz, and even lower frequencies may propagate through the intergalactic medium (IGM). I argue that the presence of these waves can be inferred by using the Universe as our detector. I discuss possible sub-MHz sources and set new non-trivial upper limits on the energy density of sub-MHz radio waves in galaxy clusters and the average cosmic background. Limits based on five effects are considered: (1) changes in the expansion of the Universe from the radiation energy density (2) heating of the IGM by free-free absorption; (3) radiation pressure squeezing of IGM clouds by external radio waves; (4) synchrotron heating of electrons in clusters; and (5) Inverse Compton upscattering of sub-MHz radio photons. Any sub-MHz background must have an energy density much smaller than the CMB at frequencies below 1 MHz. The free-free absorption bounds from the Lyman-alpha forest are potentially the strongest, but are highly dependent on the properties of sub-MHz radio scattering in the IGM. I estimate an upper limit of 6 * 10^4 L_sun Mpc^-3 for the emissivity within Lyman-alpha forest clouds in the frequency range 5 - 200 Hz. The sub-MHz energy density in the Coma cluster is constrained to be less than ~10^-15 erg cm^-3. At present, none of the limits is strong enough to rule out a maximal T_b = 10^12 K sub-MHz synchrotron background, but other sources may be constrained with a better knowledge of sub-MHz radio propagation in the IGM.
CITATION STYLE
Lacki, B. C. (2010). The end of the rainbow: what can we say about the extragalactic sub-megahertz radio sky? Monthly Notices of the Royal Astronomical Society, no-no. https://doi.org/10.1111/j.1365-2966.2010.16781.x
Mendeley helps you to discover research relevant for your work.