Efficient Data Collection Method in Sensor Networks

2Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wireless sensor networks are widely used in many fields, such as medical and health care, military monitoring, target tracking, and people's life, because of their advantages of convenient deployment, low cost, and good concealment. However, due to the low battery capacity of sensor nodes and environmental changes, the energy consumption of nodes is serious and the accuracy of data collection is low. In the data collection method of multiple random paths, due to the uneven geographical distribution between nodes and the influence of the environment, it is easy to cause the communication between nodes to be blocked and the construction of random paths to fail. This paper proposes an efficient data collection algorithm for this problem. The algorithm is improved on the basis of the random node selection algorithm. This method can effectively avoid the failure of random path node selection and improve the node selection of random path in wireless sensor networks. Then, the sensor network in the dynamic environment is analyzed based on the static environment. An efficient data collection algorithm based on the position prediction of extreme learning machines is proposed. This method uses extreme learning machine methods to perform trajectory prediction for nodes in a dynamic environment.

Cite

CITATION STYLE

APA

Cao, K., Liu, H., Liu, Y., Meng, G., Ji, S., & Li, G. (2020). Efficient Data Collection Method in Sensor Networks. Complexity, 2020. https://doi.org/10.1155/2020/6467891

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free